目的 研究菊科植物苍耳(Xanthium sibiricum Patrin ex Widder)的干燥成熟带总苞的果实(苍耳子)中苯丙素类化学成分。方法 采用正相硅胶柱色谱、反相十八烷基硅烷键合硅胶(ODS)柱色谱、Sephadex LH-20凝胶柱色谱和半制备高效液相色谱(HPLC)等色谱方法进行分离纯化,并结合高分辨质谱(HR-ESI-MS)、核磁共振(NMR)对分离得到的化合物进行结构鉴定。采用脂多糖(LPS)诱导的巨噬细胞RAW 264.7为筛选模型评价分离得到化合物的抗炎活性。结果 从苍耳子体积分数95%乙醇提取物的乙酸乙酯萃取物中分离并鉴定了24个苯丙素类化合物,分别为c-藜芦酰乙二醇(1)、3,4'-二羟基-3'-甲氧基苯丙酮(2)、阿魏醛(3)、丁香脂素(4)、蛇菰宁(5)、落叶松脂醇(6)、愈创木基甘油(7)、3-hydroxy-l-(4-hydroxy-3,5-dimethoxyphenyl)-1-propanone(8)、salicifoliol(9)、6-(4-hydroxy-3-methoxyphenyl)-3,7-dioxabicyclo[3.3.0]octan-2-ol(10)、榕醛(11)、jatrointelignan D(12)、icariol A2(13)、异落叶松脂素(14)、ehletianol C(15)、(7R,7'R,7”S,7‴S,8S,8'S,8”S,8‴S)-4”,4‴-dihydroxy-3,3',3”,3‴,5,5'-hexamethoxy-7,9';7',9-diepoxy-4,8”;4',8‴-bisoxy-8,8'-dineolignan-7”,7‴,9”,9‴-tetraol(16)、(7R,7'R,7”R,7‴S,8S,8'S,8”S,8‴S)-4”,4‴-dihydroxy-3,3',3”,3‴,5,5'-hexamethoxy-7,9';7',9-diepoxy-4,8”;4',8‴-bisoxy-8,8'-dineolignan-7”,7‴,9”,9‴-tetraol(17)、2-(4-hydroxy-3-methoxyphenyl)-1-(4-hydroxyphenyl)-propan-1,3-diol(18)、2,3-bis-(4-hydroxy-3-methoxyphenyl)-3-methoxypropanol(19)、楝叶吴萸素B(20)、threo-guaiacylglycerol-8-vanillin ether(21)、erythro-guaiacylglycerol-8-vanillin ether(22)、黄花菜木脂素B(23)和27-对香豆酰氧基熊果酸(24)。结论 化合物6~24为首次从苍耳中分离得到。对分离得到的24个化合物进行抗炎活性筛选,其中,化合物14、21和23具有抗炎活性,其IC50值分别为(28.14±1.89),(16.78±0.68)和(38.42±2.15)μmol·L-1。
Abstract
OBJECTIVE To investigate phenylpropanoids from the dried fruits of Xanthium sibiricum Patrin ex Widder (Xanthii Fructus). METHODS The compounds were isolated and purified by silica gel column chromatography, ODS chromatography, Sephadex LH-20 and semi-preparative HPLC. Base on HR-ESI-MS and NMR, their structures were identified. The anti-inflammatory activity of the isolated compounds was evaluated by lipopolysaccharide(LPS)-induced macrophage RAW 264.7 as a screening model. RESULTS A total of 24 compounds were isolated from the ethyl acetate fraction of 95% ethanol extract and identified as c-veratroylglycol(1), β-hydroxypropiovanillone(2), ferulaldehyde(3), dihydrodehydrodiconifery alcohol(4), balanophonin(5), lariciresinol(6), guaiacylglycerol(7), 3-hydroxy-l-(4-hydroxy-3, 5-dimethoxyphenyl)-1-propanone(8), salicifoliol(9), 6-(4-hydroxy-3-methoxyphenyl)-3, 7-dioxabicyclo[3.3.0] octan-2-ol(10), ficusal(11), jatrointelignan D(12), icariol A2(13), isolariciresinol(14), ehletianol C(15), (7R, 7'R, 7”S, 7‴S, 8S, 8'S, 8”S, 8‴S)-4”, 4‴-dihydroxy-3, 3', 3”, 3‴, 5, 5'-hexamethoxy-7, 9';7', 9-diepoxy-4, 8”; 4', 8‴-bisoxy-8, 8'-dineolignan-7”, 7‴, 9”, 9‴-tetraol(16), (7R, 7'R, 7”R, 7‴S, 8S, 8'S, 8”S, 8‴S)-4”, 4‴-dihydroxy-3, 3', 3”, 3‴, 5, 5'-hexamethoxy-7, 9'; 7', 9-diepoxy-4, 8”;4', 8‴-bisoxy-8, 8'-dineolignan-7”, 7‴, 9”, 9‴-tetraol(17), 2-(4-hydroxy-3-methoxyphenyl)-1-(4-hydroxyphenyl)-propan-1, 3-diol(18), 2, 3-bis-(4-hydroxy-3-methoxyphenyl)-3-methoxypropanol(19), evofolin B(20), threo-guaiacylglycerol-8-vanillin ether(21), erythro-guaiacylglycerol-8-vanillin ether(22), cleomiscosin B(23), 27-p-E-coumaroyloxyursolic acid(24). CONCLUSION Compounds 6-24 are obtained from this plant for the first time. Compounds 14, 21, and 23 show anti-inflammatory activity in LPS-induced RAW 264.7 macrophages with the IC50 values of (28.14±1.89), (16.78±0.68), and (38.42±2.15) μmol·L-1, respectively.
关键词
苍耳子 /
菊科 /
苍耳属 /
苯丙素类 /
抗炎活性
{{custom_keyword}} /
Key words
fruit of Xanthium sibiricum (Xanthii Fructus) /
Compositae /
Xanthium /
phenylpropanoid /
anti-inflammatory activity
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Ch.P (2015). Vol Ⅰ (中国药典2015年版.一部) [S]. 2015.
[2] TAO L, SHENG X S, ZhANG L, et al. Xanthatin anti-tumor cytotoxicity is mediated via glycogen synthase kinase-3β and β-catenin [J]. Biochem Pharmacol, 2016, 115(1):18-27.
[3] SHI Y S, LIU Y B, MA S G, et al. Bioactive sesquiterpenes and lignans from the fruits of Xanthium sibiricum [J]. J Nat Prod, 2015, 78(7): 1526-1535.
[4] SHI Y S, LIU Y B, MA S G, et al. A new thiophene and two new monoterpenoids from Xanthium sibiricum [J]. J Asian Nat Prod Res, 2015, 17(11): 1039-1047.
[5] JIANG H, XING X D, YAN M L, et al. Two new monoterpene glucosides from Xanthium strumarium subsp. sibiricum with their anti-inflammatory activity [J]. Nat Prod Res, 2018,Doi: 10.1080/14786419.2018,1479701.
[6] JIANG H, YANG L, LIU C, et al. Four new glycosides from the fruits of Xanthium sibiricum Patr [J]. Molecules, 2013, 18(10): 12464-12473.
[7] JIANG H, MA G X, YANG L, et al. Rearranged ent-kauranoid glycosides from the fruits of Xanthium strumarium and their antiproliferative activity [J]. Phytochem Lett, 2016, 18: 192-196.
[8] SHI Y S, LIU Y B, LI Y, et al. Chiral resolution and absolute configuration of a pair of rare racemic spirodienone sesquineolignans from Xanthium sibiricum[J]. Org Lett, 2014, 16(20): 5406-5409.
[9] LEE C L, HUANG P C, HSIEH P W, et al. (-)-Xanthienopyran, a new inhibitor of superoxide anion generation by activated neutrophils, and further constituents of the seeds of Xanthium strumarium [J]. Planta Med, 2008, 74(10): 1276-1279.
[10] YOON H N, LEE M Y, KIM J K, et al. Aldose reductase inhibitory compounds from Xanthium strumarium [J]. Arch Pharm Res, 2013, 36(9): 1090-1095.
[11] CHEN B, MA L H, WANG X B, et al. Simultaneous determination of 5 phenolic acids in fried Fructus Xanthii from different production sites and its dispensing granules by using ultra-pressure liquid chromatography [J]. Pharmacogn Mag, 2012, 9(34): 103-108.
[12] CHENG Z, WANG L, LI F, et al. A new thiazinedione glycoside from the fruits of Xanthium sibiricum[J]. Chem Nat Compd, 2013, 49(5): 977-979.
[13] QIN L P, HAN T, LI H L, et al. A new thiazinedione from Xanthium strumarium [J]. Fitoterapia, 2006, 77(3): 245-246.
[14] MA Y T, HUANG M C, HSU F L, et al. Thiazinedione from Xanthium strumarium [J]. Phytochemistry, 1998, 48(6): 1083-1085.
[15] HAN T, LI H L, ZHANG Q Y, et al. New thiazinediones and other components from Xanthium strumarium [J]. Chem Nat Compd, 2006, 42(5): 567-570.
[16] DAI Y H, CUI Z, LI J L, et al. A new thiazinedione from the fruits of Xanthium sibiricum [J]. J Asian Nat Prod Res, 2008, 10(4): 303-305.
[17] YIN R H, BAI X, FENG T, et al. Two new compounds from Xanthium strumarium [J]. J Asian Nat Prod Res, 2016, 18(5): 354-359.
[18] JIANG H, YANG L, MA G X, et al. New phenylpropanoid derivatives from the fruits of Xanthium sibiricum and their anti-inflammatory activity [J]. Fitoterapia, 2017, 117: 11-15.
[19] AGATA I, GOTO S, HATANO T, et al. 1,3,5-tri-O-caffeoylquinic acid from Xanthium strumarium [J]. Phytochemistry, 1993, 33(2): 508-509.
[20] AN H J, JEONG H J, LEE E H, et al. Xanthii Fructus inhibits inflammatory responses in LPS-stimulated mouse peritoneal macrophages[J]. Inflammation, 2004, 28: 263-270.
[21] HUANG M H, WANG B S, CHIU C S, et al. Antioxidant, antinociceptive, and anti-inflammatory activities of Xanthii Fructus extract [J]. J Ethnopharmacol, 2011, 135(2): 545-552.
[22] YEOM M, KIM J H, MIN J H, et al. Xanthii Fructus inhibits inflammatory responses in LPS-stimulated RAW 264.7 macrophages through suppressing NF-κB and JNK/p38 MAPK [J]. J Ethnopharmacol, 2015, 176(24): 394-401.
[23] INGAWALE A S, SADIQ M B, NGUYEN L T, et al. Optimization of extraction conditions and assessment of antioxidant, α-glucosidase inhibitory and antimicrobial activities of Xanthium strumarium L. fruits [J]. Biocatal Agric Biotechnol, 2018, 14: 40-47.
[24] CHANG H W, LIU P F, TSAI W L, et al. Xanthium strumarium fruit extract inhibits ATG4B and diminishes the proliferation and metastatic characteristics of colorectal cancer cells [J]. Toxins, 2019, 11(6): 313-328.
[25] PENG W, MING Q L, HAN P, et al. Anti-allergic rhinitis effect of caffeoylxanthiazonoside isolated from fruits of Xanthium strumarium L. in rodent animals [J]. Phytomedicine, 2014, 21(6): 824-829.
[26] PENG W, HAN P, YU L Y, et al. Anti-allergic rhinitis effects of caffeoylquinic acids from the fruits of Xanthium strumarium in rodent animals via alleviating allergic and inflammatory reactions [J]. Rev Bras Farmacogn, 2019, 29(1): 46-53.
[27] WANG C H, WEI P L, YAN S K, et al. Chemical constituents from the ethyl acetate portion of Inula wissmanniana [J]. Nat Prod Res Dev (天然产物研究与开发), 2014, 26(1): 33-37.
[28] DUAN Y H, DAI Y, GAO H, et al. Chemical constituents of Sarcandra glabra [J]. Chin Tradit Herb Drugs (中草药), 2010, 41(1): 29-32.
[29] DAN C, JIAO W. Chemical constituents of Caryophylli Flos [J]. Chin Mater Med (中药材), 2018, 41(5): 1108-1113.
[30] ZHU C C, JING L, YU N J, et al. A new lignan and active compounds inhibiting NF-κB signaling pathway from Caulis Trachelospermi [J]. Acta Pharm Sin B(药学学报 英文版), 2013, 3(2): 109-112.
[31] SY L K, BROWN G D. Coniferaldehyde derivatives from tissue culture of Artemisia annua and Tanacetum parthenium [J]. Phytochemistry, 1999, 50(5): 781-785.
[32] WANG L Q, ZHAO Y X, ZHOU L, et al. Lignans from Gnetum montanum Markgr. f. megalocarpua [J]. Chem Nat Compd, 2009, 45(3): 424-426.
[33] LIN S, ZHANG Y L, LIU M T, et al. Chemical constituents from branch of Fraxinus sieboldiana [J]. China J Chin Mater Med (中国中药杂志), 2015, 40(13): 2602-2611.
[34] CHI J, LI B, YANG B, et al. Chemical components and their bioactivities of Artemisia austro-yunnanensis [J]. J Chem Soc Pak, 2016, 38(3): 533-537.
[35] GONZALEZ A G, ESTEVEZ-REYES R, MATO C. Salicifoliol, a new furolactone-type lignan from Bupleurum salicifolium [J]. J Nat Prod, 1989, 52(5): 1139-1142.
[36] LI B B, LI J L, LI N, et al. Diacylglycerol acyltransferase 1 (DGAT1) inhibition by furofuran lignans from stems of Acanthopanax senticosus [J]. Arch Pharmacal Res, 2017, 40(11): 1271-1277.
[37] LI Y C, KUO Y H. Four new compounds, ficusal, ficusesquilignan A, B, and ficusolide diacetate from the heartwood of Ficus microcarpa [J]. Chem Pharm Bull, 2000, 48(12): 1862-1865.
[38] ZHU J Y, CHENG B, ZHENG Y J, et al. Enantiomeric neolignans and sesquineolignans from Jatropha integerrima and their absolute configurations [J]. RSC Adv, 2015, 5(16): 12202-12208.
[39] PANG N, WANG Y F, HE R J, et al. Chemical constituents from the leaves of Castanopsis eyrei [J]. Chin Mater Med (中药材), 2018, 41(9): 2116-2119.
[40] TANG W Z, DING X B, XIN Y Z, et al. A new lignan glycoside from the flower of Castanea mollissima Blume [J]. Acta Pharm Sin (药学学报), 2004, 39(7): 531-533.
[41] WANG M Y, ZHAN Z B, XIONG Y, et al. Studies on liposoluble constituents from Momordicae Semen [J]. China J Chin Mater Med (中国中药杂志), 2018, 43(6): 1175-1181.
[42] ZHU J X, REN J, QIN J J, et al. Phenylpropanoids and lignanoids from Euonymus acanthocarpus [J]. Arch Pharmacal Res, 2012, 35(10): 1739-1747.
[43] PARK S J, KIM N, YOO G, et al. Phenolics and neolignans isolated from the fruits of Juglans mandshurica Maxim. and their effects on lipolysis in adipocytes [J]. Phytochemistry, 2017, 137: 87-93.
[44] HE J, ZHANG X J, MA B Z, et al. Chemical constituents from aqueous extract of Solanum lyratum [J]. Chin Pharm J (中国药学杂志), 2015, 50(23): 2035-2038.
[45] OUYANG G Q, LI C J, YANG J Z, et al. Chemical constituents from stems of Clausena emarginata [J]. Chin Tradit Herb Drugs (中草药), 2016, 47(9): 1480-1485.
[46] HUANG X X, ZHOU C C, LI L Z, et al. The cytotoxicity of 8-O-4′ neolignans from the seeds of Crataegus pinnatifida [J]. Bioorg Med Chem Lett, 2013, 23(20): 5599-5604.
[47] MALIKOV V M, SAIDKHODZHAEV A I, ARIPOV K N. Coumarins: plants, structure, properties [J]. Chem Nat Compd, 1998, 34(2): 202-264.
[48] RIOS M Y, GONZALEZ-MORALES A, VILLARREAL M L. Sterols, triterpenes and biflavonoids of Viburnum jucundum and cytotoxic activity of ursolic acid [J]. Planta Med, 2001, 67(7): 683-684.
[49] YU Z X, WANG C H, ZHENG W, et al. Anti-inflammatory chromones from agarwood produced via whole-tree agarwood-inducing technique of Aquilaria sinensis [J]. Chin Pharm J (中国药学杂志), 2019, 54(23): 1945-1950.
[50] LIU B, YU T, HAN X L, et al. Research progress of anti-inflammatory effects and molecular mechanism of ginsenosides [J]. Chin Pharm J (中国药学杂志), 2019, 54(4): 253-258.
[51] OU X H, DENG J G, YU X, et al. Study on the anti-inflammatory active constituents of Mangifera indica L. seed kernel [J]. Chin Pharm J (中国药学杂志), 2015, 50(19): 1673-1677.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家重点研究计划项目资助(2017YFC1703800);自然科学基金面上项目资助(81573578);广州市科技计划项目资助(201704030120)
{{custom_fund}}